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Abstract

Reinforcement Learning has gained widespread popularity for its impact
on real-world decision-making systems. Particularly, its ability to capture
information from making decisions in certain states of an environment
to apply to other states make it a worldly learner. Traditional evasion
attacks in Adversarial Machine Learning are information-inefficient: each
adversarial example is crafted entirely independently from one another,
even when the resultant perturbations are highly similar. In this thesis, we
show how to model evasion attacks as a reinforcement learning problem.
The agent uses perturbation steps as actions, feature vectors as states, and
improvements in adversarial objectives as rewards. We study an RL attack
under this framework by instantiating an agent with a Proximal Policy
Optimization algorithm and perform the attack on a Convolutional Neural
Network trained on the MNIST dataset. First, we perform a single-sample
test and find that of 100 clean images per source class, the agent fools the
victim model on > 99% of the images within the range of 0.1% and 8.2%
ℓ0-distortion, competitive with state-of-the-art ℓ0-attacks. Next, we study
the generalizability of the RL attack by testing if the agent leverages the
information from crafting old adversarial examples to craft new adversarial
examples with less information from the victim model. The RL attack,
indeed, accelerates the generation of adversarial examples within the first
20K victim model queries, suggesting a generalization. Last, we perform
a query analysis of our attack against a state-of-the-art black-box attack,
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SquareAttack. The RL attack rapidly learns how to produce adversarial
examples quickly, therein reducing the total number of queries required to
produce hundreds of adversarial examples compared to the SquareAttack
which demonstrates no acceleration. This paper serves as an existence
proof and frontier for studying evasion attacks in Adversarial Machine
Learning through Reinforcement Learning.
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1 introduction

Reinforcement Learning (RL) stands as a prominent field in Artificial
Intelligence (AI). It provides a framework for agents to learn optimal
decision-making strategies through interaction with their environment.
Based on the concept of learning from feedback, RL models aim to maxi-
mize cumulative rewards by iteratively exploring actions in states of the
environment and their consequences. This iterative process reflects the
way humans learn through trial and error, making RL useful in handling
complex, dynamic environments where explicit instruction or labeled data
may be scarce or costly. RL algorithms have achieved remarkable success
in a myriad of domains including robotics (Ibarz et al. (2021)), finance
(Liu et al. (2022)), and recommender systems (Afsar et al. (2022)).

Adversarial Machine Learning (AML) poses a great threat to the ro-
bustness and reliability of modern Machine Learning (ML) systems. These
systems remain vulnerable to adversarial examples: imperceptible perturba-
tions to input data that lead to model misclassifications. Prior works have
shown that even without access to the victim model parameters (i.e., a
“black-box” threat model) the adversary can still effectively fool the model
by sending inputs and receiving output predictions (i.e., querying) (Pa-
pernot et al. (2017)) (Andriushchenko et al. (2020)) (Chen et al. (2017)).
However, AML algorithms fail to leverage information from crafting one
adversarial example to another (i.e. learn to craft adversarial examples).
Further, an adversary that can effectively learn to craft adversarial exam-
ples will be query efficient in future crafting. This suggests a potential to
use techniques like RL that, unlike AML algorithms, leverage information
from past experiences to improve future experiences.

In this paper, we cast the evasion attack in AML as a RL problem. Specif-
ically, we frame it as a Markov Decision Process (MDP) which captures the
underlying semantics of all evasion attacks: victim model inputs (feature
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vectors) as states, perturbation steps as actions, and a reward function
based on both the introduced distortion and the model confidence of the
label. By using different input samples as start states in the model, this
allows the RL algorithm to learn a policy that models a query-efficient gen-
eralist adversary: an adversary that exploits the information learned from
crafting past adversarial examples to inform future adversarial examples.
This attack goes against current approaches, which perform adversarial
example crafting independent to each sample.

In this paper, we build a framework to study the efficacy of a black-
box RL-based attack operating in an evasion attack MDP. Using a dataset
of clean inputs DClean, the adversary samples an input to determine a
starting state. We use the Proximal Policy Optimization (PPO) algorithm
(Schulman et al. (2017)) to learn a policy that maps the feature vectors
(states) to corresponding pixels to perturb (actions). Once perturbed, the
adversary queries the victim model and receives the output logits. The
reward is then determined as improvements in the optimization used in
the Carlini & Wagner (CW) (Carlini and Wagner (2017)) attack from
the previous state and its output logits to the new state and its output
logits. The CW optimization follows a minimization, thus the agent is
positively rewarded if the value of the objective function in the new state
is less than the previous state, and vice versa for negative reward. The
adversary then continues to operate in this RL-loop until a misclassification
is achieved (i.e., terminal state), or the maximum number of steps (i.e.,
time horizon) is met. If it is indeed a misclassification, the resulting state
is an adversarial example if the distortion applied from the original start
state is within a specific distortion budget. In this case, the original start
state is removed from DClean, as the adversary has successfully crafted
an adversarial example for the corresponding clean sample. Under this
process, we measure how many queries to the victim model it takes to
produce adversarial examples from the inputs in DClean
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To evaluate the efficacy of our approach, we use a Multi-Layer Percep-
tron policy network to model the adversary and a Convolutional Neural
Network (CNN) victim model trained on the MNIST dataset. To measure
the distortion of adversarial examples from the original sample, we use
the ℓ0-norm difference used in state-of-the-art image attacks (Papernot
et al. (2016)). First, we perform a single-sample attack where DClean only
contains exactly one clean sample. We find that after 100K queries to the
victim model, the victim model makes a misclassification > 99% of the
time within an ℓ0-norm budget of 0.1%-8.2%.

Next, we study the generalizability of the attack: does the agent lever-
age information from crafting past adversarial examples to crafting future
adversarial examples? To this end, we study the change in the number of
adversarial examples produced from the samples in DClean with respect
to queries to the victim model. In a 1-Class attack where DClean consists
of all images belonging to a single class, we observe that the number of
adversarial examples crafted accelerates with respect to queries. More
generally, in an n-Class attack where DClean consists of all images belong-
ing to n classes, the same acceleration is observed within the first 50K
queries. This suggests that the crafting of adversarial examples early on
helps reduce the number of queries required to craft other adversarial ex-
amples. Lastly, we compare our results in generating adversarial examples
from a dataset with respect to queries against a state-of-the-art black-box
attack SquareAttack (Andriushchenko et al. (2020)). Unlike our attack,
the SquareAttack demonstrates a linear relationship between adversarial
examples generated with respect to queries to the victim model; expos-
ing the fact that this method does not generalize. These results suggest
that there exists a new class of black-box attacks with RL under our MDP
framework of an evasion attack.

Our contributions are the following:

• We model evasion attacks in AML as an RL problem through an
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MDP.

• We show that an RL attack produces an adversarial example within
100K queries on > 99% of clean test samples.

• We show the generalizability of an RL attack by demonstrating its
acceleration of adversarial examples crafted within the first 50K
queries to the victim model.

1.1 Thesis Statement
Modeling evasion attacks as a reinforcement learning problem enables
adversaries to train agents that generalize crafting adversarial examples.
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2 background

2.1 Adversarial Machine Learning (AML)
Here, we discuss threat models and state-of-the-art attack algorithms in
AML.

Threat Models

The common objective of evasion attacks is often defined as follows: min-
imize the amount of perturbation applied to a sample while inducing
model misclassification. The general optimization, as seen in (Sheatsley
et al. (2023)), can be formally written as:

arg min
δ

∥δ∥p

such that f(x + δ) ̸= y

x + δ ∈ Bϕ(x)

(2.1)

where δ is the perturbation, x the original input sample, f the target model,
y the sample label, and Bϕ(x) the norm-ball centered at x with a radius of
ϕ (i.e., a budget).

The approach adversaries take in solving the optimization largely de-
pends on access to the victim model f. When access to the target model is
restricted to its outputs, the attack setting is black-box. Similarly, the white-
box setting is when the adversary is assumed to have full access to the
victim models parameters and outputs. Prior works have shown that ad-
versaries in black-box settings, despite limited model access, are still very
effective in achieving their goal (Papernot et al. (2017))(Andriushchenko
et al. (2020))(Chen et al. (2017)). In this paper, we consider a black-box
threat model: the adversary can query the victim model and receive the
output class probabilities. This is because the only information the RL
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agent needs is the output logits of the victim model. This information is
used to determine a the reward at each step of the algorithm.

Carlini & Wagner Attack (CW)

The CW attack (Carlini and Wagner (2017)) is an optimization-based
attack algorithm which minimizes a sum of perturbation norm and victim
model confidence on the label. Formally, the optimization is written:

min
δ

∥δ∥p + c · f(x+ δ)

such that x+ δ ∈ [0, 1]n
(2.2)

where δ is the perturbation applied to the input sample x, f the loss function
that expresses the models confidence in the class corresponding to the
input label, and c the coefficient that weights the value of f. The function
f in the paper is defined:

f(x) = max{max
i ̸=y

[Z(x)]i − [Z(x)]y, κ} (2.3)

where y is the label of the sample x, Z(x) the output logits of the victim
model from input x, and κ the transferability parameter. This function is
used to value the difference between the logit of the label and the highest
logit that is not the label. Thus, a misclassification is wold make the value
of f non-positive.

A c value too high will cause the algorithm to find solutions that
have high distortion, and a value too low will cause the algorithm to find
solutions with high confidence in the label (i.e., no misclassification). The
CW attack uses a binary search method to find the best value of c that
maximizes misclassification percentage weighted by the ℓp-distortion of
δ. This optimization is useful for an RL attack because it can be used as a
sense of reward if the objective improves at each step.
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SquareAttack

SquareAttack (Andriushchenko et al. (2020)) is a state-of-the-art black-
box attack designed to craft adversarial examples by perturbing input
images with square patches. SquareAttack relies on random search within
a constrained region of the image, making it particularly effective against
defense mechanisms that rely on gradient masking: a technique used to
distort the gradient information given to the attacker. Specifically, the
algorithm crafts square perturbation patches δ, query’s the victim model
f(x + δ), and keeps the perturbation if the loss function decreases from
the previous iteration, otherwise discard and repeats.

SquareAttack is competitive amongst the most query-efficient black-box
attack methods. That is, it requires very few interactions with the victim
model to craft adversarial examples. The algorithm balances exploration
(trying different perturbations via random search) and exploitation (re-
fining promising perturbations) to minimize the total number of queries.
However, the algorithm does not have trainable parameters and thus not
actually performing any learning across samples. The foundation of RL
relies on exploration and exploitation, however, the policies that generate
actions contain trainable parameters. Thus, making an RL attack a more
generalist adversary compared to the SquareAttack.

2.2 Reinforcement Learning
In this work, we study the efficacy of RL in environments that aim to fool
machine learning models. RL consists of agents and environments: the
agent plays actions in the environment and receives rewards and next
states from the environment. The goal is to learn a policy that generates
actions that maximize the cumulative reward over time. The following
sections will lay out the necessary RL concepts used in this paper.
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Markov Decision Processes (MDPs)

MDPs are powerful mathematical frameworks used to model decision-
making processes under uncertainty. They are formally defined as the
tuple (S,A,P,R,γ), where S is the set of states representing configurations
of the system, A the set of actions that can be played, P the state tran-
sition probability function mapping states and actions to the next state,
R the reward function, and γ ∈ (0, 1] the discount factor representing
the importance of future rewards. Another important notation of MDPs
are timesteps t and terminal timesteps T . At each timestep t, the state of
the environment is represented as st and the action taken at this state is
denoted at. The resulting next state and reward are denoted st+1 and rt,
respectively. This loop continues until a terminal state sT is reached in
which no more actions can be played and the process ends. This process
is known as an episode, or trajectory τ, of the environment.

The agent’s goal is to learn a policy π(a|s) that maps states to action
probabilities that maximizes the sum of rewards across all timesteps t.
Formally:

max
π

Eπ

[
T∑

t=0

γtR(st,at)

]
(2.4)

where the optimization is to select the policy π that maximizes the
cumulative sum of discounted rewards R. Most RL algorithms use a state-
value function V and a state-action-value function Q to facilitate learning
based on how valuable a state or state-action pair is in generating future
rewards under the current policy π. They can be formally written as:

Vπ(s) = Eπ

[ ∞∑
t=0

γtR(st,at)|s0 = s

]

Qπ(s,a) = Eπ

[ ∞∑
t=0

γtR(st,at)|s0 = s,a0 = a

] (2.5)
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where V quantifies expected cumulative discounted rewards starting from
state s and following policy π. Likewise, Q quantifying expected cumula-
tive discounted rewards starting from state s, taking an action a at state s,
and continuing to follow policy π.

A common hyperparameter used in training RL algorithms is the time
horizon H. This refers to the maximum number of timesteps of an episode.
A finite time horizon leads to episodic tasks, while an infinite time horizon
typically relates to continuing tasks.

A key feature of MDPs is their ability to capture both the immediate
rewards associated with actions, and the long-term consequences of deci-
sions through the concept of cumulative rewards. By optimizing cumula-
tive reward over time, agents can learn strategies that balance short-term
gains with long-term objectives. Thus, making MDPs invaluable tools for
designing optimal decision-making policies in uncertain environments.

Proximal Policy Optimization (PPO)

PPO (Schulman et al. (2017)) stands as a prominent algorithm in RL,
particularly in addressing continuous control tasks. The core idea behind
PPO revolves around constraining policy updates to a local region with
little compute. This mitigates the potential for large policy changes that
may lead to destabilization during training, as well as the compute latency
involved with computing KL-Divergences as seen other constrained policy
update algorithms like TRPO (Schulman et al. (2015)). Formally, the
objective can be expressed as maximizing the clipped surrogate objective:

LCLIP(θ) = Et

[
min(rt(θ)Ât, clip(rt(θ), 1 − ϵ, 1 + ϵ)Ât)

]
(2.6)

where θ the policy parameters, rt the ratio of the new policy actions
to the old policy actions, Ât the advantage estimate at time step t, and
ϵ a hyperparameter controlling the degree of clipping. The advantage
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function A is defined by the value functions V and Q. Formally:

Aπ(s,a) = Qπ(s,a) − Vπ(s) (2.7)

where the function A quantifies the advantage of taking action a at state s

rather than following the policy π at state s, hence the name advantage
function. The PPO algorithm computes these advantage estimates from a
rollout of rewards by:

Ât = rt + γrt+1 + γ2rt+2 + ... + γT−t+1rT−1 + γT−tVπ(sT ) − Vπ(st) (2.8)

where the sum of rewards from timestep t to T − t and the value of the
last state sT represents the value of the function Qπ. The PPO algorithm
computes this advantage to weight the value of the policy ratio rt(θ): a
high advantage will drive larger updates to the new policy parameters,
and vice-versa for low advantages.

By optimizing this objective function, PPO balances the trade-off be-
tween exploration and exploitation that facilitates efficient learning in
complex environments.
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3 proposed framework

In this chapter, we (1) define the underlying MDP of a black-box RL attack,
and (2) outline the attack procedure according to adversarial goals.

3.1 Environment Dynamics
Here, we define the state space S, action space A, and the terminal states
sT ∈ S.

The RL-based adversary’s goal is to learn a policy that maps samples
to corresponding perturbations that reduce model confidence in the corre-
sponding label. Thus, in the image domain, the state space consists of all
valid images. Formally:

S = {x|∀i, xi ∈ R∧ xi ∈ [0, 1]} (3.1)

where x is the input sample and xi the i-th feature. For this environment,
we assume that all start states s0 are samples from a dataset that are
correctly classified by the victim model, i.e., maxi[Z(s0)] = y where y is
the label.

In an RL-based attack, the dimensionality of the action space must
be small enough to facilitate efficient learning, i.e. the number of actions
cannot be to large. In this attack, we consider an action that selects four
features of the state: two features that get +1 added, and two features that
get -1 added. In the image domain, this would be selecting 4 pixels within
the valid height and width dimensions of the image. Formally,

(xiδ,yi
δ) ∈ {(x,y)|0 ⩽ x < H and 0 ⩽ y < W} (3.2)

where x the pixel height coordinate, y the pixel width coordinate, δ ∈
{+1,−1} the perturbation magnitude and i ∈ {1, 2} the first or second pixel
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of δ perturbation magnitude. More generally,

A = [(x
(1)
+1 ,y(1)

+1), (x
(2)
+1 ,y(2)

+1), (x
(1)
−1 ,y(1)

−1), (x
(2)
−1 ,y(2)

−1)]
T (3.3)

At each timestep t, the adversary will select an action perturbation
at ∈ A to apply to current feature vector state st ∈ S and clamps the image
to [0, 1] for the new feature vector state st+1 ∈ S. Then, the adversary
queries the victim model and receives output logits Z(st+1).

We define the terminal timestep T > 0 as the timestep at which the
victim model makes a misclassification, i.e., maxi[Z(s0)]i ̸= maxi[Z(sT )]i.
In the environment, we instantiate the maximum episode length (i.e. time
horizon) to t = 100 timesteps. With this set, this means the maximum
ℓ0 distortion value is equal to 100 timesteps × 4 actions = 400 pixels
perturbed, thus a 400/784 = 51% distortion on an MNIST dataset with
784 pixels. Setting this time horizon cap helps the adversary not explore
too far outside the distortion budget of the original image s0 with no
misclassification.

3.2 Reward Function Definition
In order to meet the adversarial goal in creating a misclassification within
some distortion budget, a reward function must be designed such that the
agent recieves positive rewards for taking actions that lead to mislcassifi-
cations with small distortion.

The optimization objective given in Equation 2.2 provides a numerical
representation of how well the adversary is doing in reaching said desir-
ables. In an RL-based approach, the perturbation at ∈ A applied to state
st ∈ S at timestep t < T must decrease the value of the current evaluation of
the objective. Let us define the function ρ as an evaluation of this objective
at a timestep t:
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ρ(st) = ∥st∥p + f(st) (3.4)

where st ∈ S is the state at timestep t, p distortion budget norm, and
f the function used in the CW Objective (Equation 2.2) to evaluate the
difference between the victim model’s logit in the actual class and the next
most confident logit. For this environment, we set κ = 0 in the function f,
thus all misclassifications will give a value of 0 from f.

With the function ρ being an evaluation of the CW Objective at state st,
we want the reward to reflect the improvement of this evaluation relative to
the previous value ρ(st−1). Additionally, we want to penalize the agent for
remaining stationary, and provide reward bonuses for misclassifications.
Thus, the reward function R is defined:

R(st) =


r− if st = st−1

r+ + ρ(st−1) − ρ(st) if f(st) = 0

ρ(st−1) − ρ(st) otherwise

(3.5)

where the first case corresponds to the penalty r− as a result of station-
arity, the second case where a misclassification is achieved and a bonus r+
is earned, and the third case where misclassification has not been reached
and reward is strictly the step-wise improvement of the CW objective. We
include the stationarity penalty so that the agent does not fall into the
"no-move is the best move" phenomena common in RL (Saisubramanian
et al. (2022)). The misclassification bonus is given to the agent to realize
that this state is the ultimate goal: creating a misclassification.

3.3 Adversarial Goal and State Resetting
Traditional black-box attacks on machine learning models optimize per-
sample; suggesting a potential to use techniques like RL that leverage
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Figure 3.1: RL Attack Overview: (Left) The adversary collects clean
samples from the dataset to insert into DClean. (Right) The adversary
samples a point from DClean at the beginning of each episode. Once an
episode terminates, the adversary determines if the sample will remain in
DClean by checking if the terminal state is an adversarial example. The
process repeats for every episode until |DClean| = 0.

information from many different states of the environment. To capture the
information in crafting many adversarial examples different episodes of the
environment, we perform a sampling from a set of samples to determine
the start state s0 at the beginning of every episode. This set of samples we
refer to as DClean, as these samples are assumed to be correctly classified
by the victim model. The adversary fills DClean with all clean samples
they wish to craft adversarial examples on. This process is illustrated in
Figure 3.1 (Left). Thus, depending on the adversarial goal, the adversary
may choose to attack a single sample, single class, multiple classes, etc
(We explore all three goals in the evaluation).

At the beginning of each episode, the adversary samples (x,y) ran-
domly from DClean and the initial state s0 is then set equal to x. Once a
terminal state sT is reached, a removal policy is performed on DClean and
is updated as follows:

Successful: If the resulting state sT satisfies ∥sT∥p ⩽ ϵ and f(sT ) = 0



15

(i.e. a misclassification within self-imposed ℓp-budget), we say the sample
is an adversarial example. Thus, (x,y) is removed from DClean.

Unsuccessful: If the resulting state sT does not qualify as an adversarial
example under the self-imposed ℓp-budget, DClean remains unchanged
to allow the adversary to re-sample it in future episodes.

The adversary wants to craft as many adversarial examples with as
few queries as possible. Thus, once an adversarial example is crafted
on a specific sample, the agent will not sample it anymore due to the
removal policy. This process is illustrated in Figure 3.1 (Right). Under this
proposed environment, training ultimately terminates once all samples in
DClean have been generated as adversarial examples. For our experiments,
we use a ℓ0-budget common in state-of-the-art attacks Sheatsley et al.
(2023)Papernot et al. (2016)Carlini and Wagner (2017).
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4 evaluation

With an RL-based approach to crafting adversarial examples in black-box
settings, we ask the following:

1. Can RL craft adversarial examples under our proposed framework?

2. Can RL generalize crafting adversarial examples?

3. How does our RL attack compare against state-of-the-art black-box
attacks?

4.1 Experimental Setup
For our experiments, the victim model architecture is a Convolutional
Neural Network (CNN) trained on the MNIST Dataset with > 99% ac-
curacy on a test dataset using an NVIDIA A100. The model is written
in Pytorch (Paszke et al. (2019)) with architecture and training details
(Table 4.1) similar to those used in AML literature (Carlini and Wagner

Victim Model PPO Policy
Conv. Neurons (16,32) πθ Linear Neurons (64,64,8)
Kernel Size 3 Vϕ Linear Neurons (64,64,1)
Stride 1 Activation Tanh
Linear Neurons (128,10) Gamma 0.95
Activation ReLU Steps 128
Loss CE Batch Size 128
Optimizer Adam Learning Rate 5e-4
Epochs 20 K 10
Batch Size 128
Learning Rate 1e-3

Table 4.1: Experiment Hyperparameters
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Figure 4.1: Single-Image Attack (Examples): The states sT after 100K
queries to the victim model. Each source class (rows) is supported by 10
different images (columns) crafted as adversarial examples. Each sample
is misclassified by the victim model.

(2017))(Papernot et al. (2016))(Sheatsley et al. (2023)). The PPO policy
and value networks follow a default Multi-Layer Perceptron (MLP) archi-
tecture (Table 4.1) from StableBaselines (Raffin et al. (2021)). Training
the PPO agent was performed on the CPU only pool in the Center for
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Figure 4.2: Single-Image Attack (Classifications): The distribution of
victim model classifications on sT across each source class.

High Throughput Computing (Center for High Throughput Computing
(2006)).

4.2 Single Sample Crafting
Given the current setup of the AML environment, we ask: can RL craft
adversarial examples? To this end, we begin by inserting a single (x,y)
sample from the clean test dataset into DClean and run the attack with ϵ =

0, i.e. no dataset removal. Thus, the policy learns to continually optimize
the C&W objective for smaller perturbations with misclassifications. We
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Figure 4.3: Single-Image Attack (Distortion): The ℓ0-Distortion distribu-
tion of the 100 final states sT per source class after 100K queries.

run this test 1000 times; randomly sampling 100 images per source class. At
the end of 100K queries in each test, we run a final episode until termination
with a fixed policy and collect the final state sT . Of these 1000 final states,
we show a sample of 10 per class in Figure 4.1.

In this untargeted attack scenario, a subsequent question arises: what
is the victim model classifying these adversarial examples as? To this
end, we plot a heatmap in Figure 4.2 that gives the distribution of the
victim model classifications after 100K queries for the 100 clean samples
per source class. We observe that the attack induces misclassification on
> 99% of the images, and most notably, the vast majority of misclassified



20

samples are classified as 7, 8, or 9. On the contrary, very few adversarial
examples are misclassified as 0, 1, and 6.

In the plot seen in Figure 4.3, we observe the mean, 25% quartile, 75%
quartile, minimum, and maximum values of the ℓ0 distortion associated
with the adversarial examples crafted at the end of each run. State-of-
the-art white-box attacks such as JSMA (Papernot et al. (2016)) boast ℓ0

distortions within the range of 2% and 14%. We observe that distortion
created by our RL attack on single samples falls within the range of 0.1%
and 8.2%, which is competitive with that of JSMA.

Given the high success rate in crafting adversarial examples with per-
turbations competitive with known attacks on MNIST, we know that our
formulation of an RL attack can craft adversarial examples.

4.3 Multi-Sample Generalist Crafting
Given the empirical evidence that our RL-based attack can learn to craft a
single adversarial example, we ask: can RL generalize crafting adversarial
examples? To test this hypothesis, we insert many samples from the clean
test dataset into DClean and fix ϵ > 0 to employ the dataset removal once
a misclassification, or terminal state, is reached within the budget. We
investigate a variety of attack settings fixated on the DClean initialization.
To this end, we define the n-Class Attack: the adversary wishes to attack all
clean samples of n classes, thus initializing DClean with all clean samples
in the set of particular nclasses. In the case of MNIST with 10 classes,
the total number of possible n-Class attack combinations is

(10
n

)
, as there

exists many choices of n classes belonging to an n-Class Attack. In our
experiments, we test all possible combinations for each n-Class Attack.
In the clean test dataset where the victim model has > 99% accuracy, the
number of samples per class in MNIST is approximately 1000.

Since the RL Attack seeks to craft adversarial examples on all samples
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in DClean, in the fewest amount of queries q, we use the term Adversarial
Yield as a measurement for the number of samples that have been crafted
as adversarial examples under the ϵ budget. Formally,

Adversarial Yield (q) =

|(DClean

∣∣∣∣
0
)\(DClean

∣∣∣∣
q

)|

|(DClean

∣∣∣∣
0
)|

· 100 (4.1)

where we evaluate the set cardinality of DClean before training (query
0) and at the current query value (query q). This formula then becomes
a measurement of the percentage of samples that have been crafted as
adversarial examples.

In the 1-Class attack, we perform 10 trials per 1-Class attack combina-
tion (

(10
1

)
= 10 total). In Figure 4.4, we can observe the relationship of

Adversarial Yield with respect to the Query count on a per 1-Class attack
combination (0-9) hue with 95% confidence intervals for a ϵ =7% threat
model. The trend across all combinations is an acceleration up to a 75% -
80% Adversarial Yield, then decreasing slope to convergence at 100% Yield.
The acceleration early in the training says that the agent is improving its
ability to craft examples in the specific class. Further, this suggests that
the agent is generalizing perturbations steps across samples in DClean. A
caveat with the 1-Class attack is that some combinations take much longer
than others to reach 100% Adversarial Yield. Particularly, on average, the
class of 2 and 7 take greater than 300K queries to do so, whereas 1, 4, and
9 take less than 50K queries.

In Figure 4.5, we observe the relationship of Adversarial Yield with
respect to different ϵ values and 1-Class Attack combinations. The entries
are averaged across the 10 trials and taken at a fixed Query count 100K.
There are two apparent trends: (1) the Adversarial Yield increases as
the budget value ϵ increases, and (2) each 1-Class combination responds
differently as the ϵ budget increases. The trends across each attack combi-
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nation are correlated with findings in Figure 4.3 and Figure 4.4: classes 2
and 7 are much more difficult to attack than classes 1, 4, and 9.
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Figure 4.4: 1-Class Attack: The Adversarial Yield (%) with respect to
Query count for each 1-Class attack combination on the MNIST dataset.
Each line is averaged across 10 trials of the corresponding 1-Class attack
combination.

Lastly, we want to stress how generalizable an RL attack is: do the
results from the 1-Class attack hold for all n-Class attack settings? To
this end, we run every possible combination of n-Class attack settings
for 10 trials and plot the Adversarial Yield with respect to Query count
on a per n-Class attack setting averaged across combinations. The plot
seen in Figure 4.6 shows the Adversarial Yield with respect to the Query
count on a per n-Class attack setting hue with 95% confidence intervals
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Figure 4.5: 1-Class Attack: The Adversarial Yield (%) with respect to
epsilon budget ϵ and source class combination of the 1-Class attack. The
values are all taken at 100K queries.

for a ϵ =10% threat model. At first glance, we see that the slope generally
decreases as n increases in the n-Class attack settings. This is due to the
increased diversity in initial start states s0 for higher values of n. However,
the increasing to decreasing slope seen in Figure 4.4 is also seen in this
plot across all attack settings. When the slope increases, the RL agent is
crafting adversarial examples with less queries than previous examples.
This is evidence that the agent is generalizing: the agent leverages the
information from crafting old adversarial examples to craft others with
less queries. The decreasing slope or convergence-like behavior provides
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evidence that the agent learns a policy that generalizes crafting on the
majority of samples in DClean; samples that are left are considered outliers
to the generalist adversarial policy.
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Figure 4.6: n-Class Attack: The Adversarial Yield (%) with respect to
Query count for all n-Class attacks on the MNIST dataset. Each line is
averaged across all possible combination of the corresponding n-Class
attack.



25

4.4 RL vs. Known Attacks
A generalist adversarial attack is desirable for an adversary seeking to
generate adversarial examples on many samples with as little interaction
with the victim model as possible. However, this begs the question: how
well does the RL attack, RLAttack, stack up against state-of-the-art black
box attacks? To this end, we perform an Adversarial Yield vs. Query count
evaluation between our RLAttack and SquareAttack (Andriushchenko
et al. (2020)).

To observe the utility of SquareAttack, we run it on each of the 1-Class
attack settings with an ℓ2-budget of ϵ = 4.0. To emulate a time horizon in
the RLAttack, the SquareAttack is given 100 queries maximum on samples
to reach a misclassification within specified budget. If an adversarial
example is achieved, a removal policy like the RLAttack is employed. We
run 10 trials per 1-Class attack combination using SquareAttack and plot
the results with 95% confidence intervals in Figure 4.7. It is clear that
classes 2 and 7 require more queries to reach higher Adversarial Yield, and
conversely, fewer queries in classes 1 and 9 to reach higher Adversarial
Yield. These are consistent with results that were found in our RLAttack.
It is also apparent that these lines have a linear relationship with respect to
queries. This is expected because SquareAttack operates on a per-sample
basis and thus, fails to leveraging experience from crafting prior adversarial
examples.

We are interested to see how well, on average, the RLAttack performs
in the 1-Class attack setting against SquareAttack. To this end, we fix the
RLAttack ℓ0-budget ϵ =7% and the SquareAttack ℓ2-budget ϵ = 4.0. For
each 1-Class attack combination per attack, we run 10 trials and average
the results across all combinations per class and plot the results with 95%
confidence intervals in Figure 4.8. It is clear that the RLAttack after few
queries increases Adversarial Yield rapidly, as this was seen across the
beginning of all 1-Class attacks in Figure 4.4. Leveraging the crafting of ad-
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Figure 4.7: SquareAttack 1-Class Attack: The Adversarial Yield (%) with
respect to Query count for each 1-Class combination of the MNIST dataset.

versarial examples to exploit other samples in distribution with RLAttack
introduces new adversarial capabilities when considering this whole-sale
version of producing adversarial examples.
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Figure 4.8: RLAttack vs. SquareAttack in 1-Class Attacks: The Adver-
sarial Yield (%) with respect to Query count averaged across all 1-Class
attack combinations of the MNIST dataset.
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5 discussion

In this section, we discuss the limitations of this work and potential future
directions.

5.1 Limitations
While the state space of the RL attack consist of grayscale images, we
choose to model the PPO policy and value networks with Multi-Layer
Perceptrons. Despite the more favorable CNN architecture for this image
attack, we achieve compelling results that emphasize the potency of a
Reinforcement Learning attack. This suggests that its effectiveness is not
contingent upon the complexity of the model architecture, and further
studies on this attack framework may choose to use a CNN to achieve even
better results.

This thesis performs a query analysis of an ℓ0 based RL attack against
an ℓ2 based SquareAttack. While ℓ0 and ℓ2 norms quantify image distortion
differently, we weight the takeaways of our attack on the trends of query-
efficiency more than query counts. Our method exhibits accelerated and
generalizable performance improvements, with non-linear trend in query-
efficiency. SquareAttack, operating per-sample, shows a linear progression,
underscoring the adaptability of our approach.

In this work, we model the agents actions on MNIST as selecting 4
features of the feature vector. This approach is inspired by the steps taken
in the JSMA on MNIST, where 2 pixels are selected to turn white (or black).
Our perturbations measurement, thus, became the same as what is used
in the JSMA (ℓ0-norm). By manipulating the state and actions space of
the environment in this work, other variants of an RL-based attack can be
studied under different ℓp threat models.

In our approach, several limitations should be acknowledged. An RL-
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based method introduces additional complexity in terms of training time
and computational resources. The requirement to model the attack as
an MDP can also result in less straightforward design and implementa-
tion. Furthermore, the RL model’s performance is heavily dependent on
the exploration strategy and reward engineering, which can introduce
variability and potentially limit the robustness and generalizability of
the attack. Lastly, while RL enables leveraging information from previ-
ous examples, this advantage may be offset by the overhead associated
with policy learning, particularly in high-dimensional input spaces where
standard black-box methods might remain more efficient.

5.2 Future Directions
This thesis primarily provides a casting of evasion attacks in adversarial
machine learning to a reinforcement learning problem through a Markov
Decision Process. The utility of using RL in this settings comes from gen-
erating many adversarial examples with fewer and fewer victim model
interaction. An interesting study branching off this idea of "learning to
craft" may be to consider no removal policy and evaluate the agents per-
formance on a test set of samples that are excluded from set of start states.
Therefore, the model continues to train on all start states from a set of
samples and is evaluated based off of unseen samples, providing a new
angle in studying an RL attack’s generalizability.

With the development of a new attack framework with RL, the ques-
tion that immediately arises: how can this be implemented as a defense
mechansim? To this end, an intuitive approach may be to flip-flop the
training of a machine learning model and an RL attack much like the stan-
dard adversarial training technique. However, since the RL attack learns
a much more broad understanding of the decision boundary, it may be
more interesting to study a defense that facilitates updates to the machine
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learning model based on the value function of a sample according to an
RL attack.
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6 conclusion

In this thesis, we cast evasion attacks as a reinforcement learning problem.
We first define a Markov Decision Process that models feature vectors
as states, perturbation steps as actions, and reward as improvements to
minimizing sample distortion and model confidence. We use a Proximal
Policy Optimization algorithm to learn a policy that crafts adversarial
examples under this framework. Then, we test the effectiveness of this
attack on single samples from an MNIST dataset and find that our method
fools the victim model > 99% of the time with distortions competitive
with the state-of-the-art. Next, we evaluate the generalizability of our
attack by training the policy to craft many examples, and observe that the
number of victim model queries required to produce adversarial examples
decreases within the firs 20K queries. Last, we perform a query analysis
of our attack against SquareAttack, a state-of-the-art black-box attack, and
show that this acceleration behavior of adversarial examples generated
with respect to victim model queries allows it to surpass the SquareAttack,
a state-of-the-art black-box attack, in generating hundreds of adversarial
examples with less queries. By framing using reinforcement learning as an
evasion attack under our proposed model, this suggests a new dimension
in studying model robustness and machine learning security.
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